Comportamiento de forrajeo de la mojarra mexicana Amphilophus istlanus en potencial riesgo por el depredador invasor Amatitlania nigrofasciata
Contenido principal del artículo
Resumen
Caracterizar los rasgos conductuales de juveniles de la mojarra Mexicana puede ayudar a predecir su supervivencia ante la introducción de una especie depredadora invasora como el pez cíclido convicto. Nosotros predecimos que los individuos en presencia de cíclidos convictos podrían reducir su actividad de nado y su consumo de comida y nuestra hipótesis fue que la actividad de nado y la comida consumida por la mojarra mexicana en dos contextos -con y sin amenaza de depredación- está relacionada con sus niveles de agresividad. Probamos esto evaluando experimentalmente la actividad de nado y el alimento consumido cuando los juveniles estaban en presencia del pez invasor cíclido convicto y cuando no lo estaban y relacionamos la consistencia en la actividad de nado de los juveniles de la mojarra Mexicana con su agresividad individual. Como esperábamos, los peces fueron menos activos cuando los cíclidos convictos estuvieron presentes. Adicionalmente, la actividad de nado de la mojarra Mexicana en ausencia y presencia del cíclido convicto está relacionada con la agresividad; los individuos con mayor actividad de nado y que comieron más también fueron los más agresivos. Esto sugiere que los juveniles de la mojarra Mexicana podrían sufrir consecuencias ecológicas al enfrentarse al depredador invasor convicto.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Citas
Arce, E., & Alcaraz, G. (2013). Plasticity of shell preference and its antipredatory advantages in the hermit crab Calcinus californiensis. Canadian Journal of Zoology, 91, 321-327. doi:10.1139/cjz-2012-0310
Arce, E., & Córdoba-Aguilar, A. (2018). The right choice: predation pressure drives shell selection decisions in the hermit crab Calcinus californiensis. Canadian Journal of Zoology, 96, 454-459. doi: 10.1139/cjz-2017-0023
Archundia, M., & Arce, E. (2019). Fighting behaviour in native fish: the Mexican mojarra (Cichlasoma istlanum) wins when confronted with the non-native convict cichlid fish (Amatitlania nigrofasciata). Journal of Ethology, 37, 67-73. doi:10.1007/s10164-018-0569-5
Arvigo, A.L., Miyai, C.A., Sanches, F.H., Barreto, R.E., & Costa, T.M. (2019). Combined effects of predator odor and alarm substance on behavioral and physiological responses of the pearl cichlid. Physiology & Behavior, 206, 259-263. doi:10.1016/j.physbeh.2019.02.032
Balasch, J.C., Tort, L. (2019). Netting the stress responses in fish. Frontiers in Endocrinology, 10, 62. doi:10.3389/fendo.2019.00062
Balzarini, V., Taborsky, M., Wanner, S., Koch, F., & Frommen, J.G. (2014). Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behavioral Ecology and Sociobiology, 68, 871-878. doi:10.1007/s00265-014-1698-7
Belgrad, B.A., & Griffen, B.D. (2016). Predator-prey interactions mediated by prey personality and predator hunting mode. Proceedings of the Royal Society B, 283, 20160408. doi:10.1098/rspb.2016.0408
Bell, A.M., & Sih, A. (2007). Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecology Letters, 10, 828-834. doi:10.1111/j.1461-0248.2007.01081.x
Biro, P.A., & Booth, D.J. (2009). Extreme boldness precedes starvation mortality in six-lined trumpeter (Pelates sexlineatus). Hydrobiologia, 635, 395. doi:10.1007/s10750-009-9902-x
Biro, P.A., & Dingemanse, N.J. (2009). Sampling bias resulting from animal personality. Trends in Ecology & Evolution, 24, 66-67. doi:10.1016/j.tree.2008.11.001
Blake, C.A., & Gabor, C.R. (2014). Effect of prey personality depends on predator species. Behavioral Ecology, 25, 871-877. doi:10.1093/beheco/aru041
Brown, G.E., & Dreier, V.M. (2002). Predator inspection behaviour and attack cone avoidance in a characin fish: the effects of predator diet and prey experience. Animal Behaviour, 63, 1175-1181. doi:10.1006/anbe.2002.3024
Brown, G.E., Elvidge, C.K., Ramnarine, I., Chivers, D.P., & Ferrari, M.C.O. (2014). Personality and the response to predation risk: effects of information quantity and quality. Animal Cognition, 17, 1063-1069. doi:10.1007/s10071-014-0738-z
Boyer, N., Réale, D., Marmet, J., Pisanu, B., Chapuis, J.L. (2010). Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. Journal of Animal Ecology, 79, 538-547. doi:10.1111/j.1365-2656.2010.01659.x
Brown, G.E,, Bongiorno, T., Dicapua, D.M., Ivan, L.I., & Roh, E. (2006). Effects of group size on the threat-sensitive response to varying concentrations of chemical alarm cues by juvenile convict cichlids. Canadian Journal of Zoololy, 84, 1-8. doi: 10.1139/z05-166
Castaldelli, G., Pluchinotta, A., Milardi, M., Lanzoni, M., Giari, L., Rossi, R., & Fano, E.A. (2013). Introduction of exotic fish species and decline of native species in the lower Po basin, north‐eastern Italy. Aquatic Conservation, 23, 405-417. doi:10.1002/aqc.2345
Castanheira, M.F., Herrera, M., Costas, B., Conceição, L.E., & Martins, C.I. (2013). Can we predict personality in fish? Searching for consistency over time and across contexts. PLoS One. 8, e62037. doi:10.1371/journal.pone.0062037
Castillo, Y., & Arce, E. (2021). Female preference for dominant males in the Mexican mojarra cichlid fish, Cichlasoma istlanum. Journal of Fish Biology, 98, 189-195. doi:10.1111/jfb.14569
Clement, T.S., Parikh, V., Schrumpf, M., & Fernald, R.D. (2005). Behavioral coping strategies in a cichlid fish: the role of social status and acute stress response in direct and displaced aggression. Hormones and Behavior, 47, 336-342. doi:10.1016/j.yhbeh.2004.11.014
Cote, J., & Clober, J. (2007). Social personalities influence natal dispersal in a lizard. Proceedings of the Royal Society, 274, 383-390. doi: 10.1098/rspb.2006.3734
Cooke, S.J., Steinmetz, J., Degner, J.F., Grant, E.C., & Philipp, D.P. (2003). Metabolic fright responses of different-sized largemouth bass (Micropterus salmoides) to two avian predators show variations in nonlethal energetic costs. Canadian Journal of Zoology, 81, 699-709. doi:10.1139/z03-044
Davis, A.C.D. (2018). Differential effects of native vs. invasive predators on a common Caribbean reef fish. Environmental Biology of Fishes, 101, 1537-1548. doi:10.1007/s10641-018-0798-z
De la Torre, Z.A.M., Arce, U.E., Luna-Figueroa, J., & Córdoba-Aguilar, A. (2018). Native fish, Cichlasoma istlanum, hide for longer, move and eat less in the presence of a non-native fish, Amatitlania nigrofasciata. Environmental Biology of Fishes, 101, 1077-1082. doi:10.1007/s10641-018-0761-z
Desjardins, J.K., & Fernald, R.D. (2010). What do fish make of mirror images? Biology Letters, 6, 744-747. doi:10.1098/rsbl.2010.0247
Dhellemmes, F., Smukall, M.J., Guttridge, T.L., Krause, J., Hussey, N.E. (2021). Predator abundance drives the association between exploratory personality and foraging habitat risk in a wild marine meso-predator. Functional Ecology, 35, 1972-1984. doi:10.1111/1365-2435.13874
Eaton, L., Sloman, K.A., Wilson, R.W., Gill, A.B., & Harborne, A.R. (2016). Non-consumptive effects of native and invasive predators on juvenile Caribbean parrotfish. Environmental Biology of Fishes, 99, 499-508. doi:10.1007/s10641-016-0486-9
Fabre, N., GarcÍa-Galea, E., & Vinyoles, D. (2014). Boldness is related to the development of the cephalic crest in the male of the river blenny Salaria fluviatilis (Asso, 1801). Current Zoology, 60:373-380. doi:10.1093/czoolo/60.3.373
Franco, M., & Arce, E. (2022). Aggressive interactions and consistency of dominance hierarchies of the native and non-native cichlid fishes of the Balsas Basin. Aggressive Behavior, 48, 103-110. doi:10.1002/ab.21997
Fulmer, A.G., Neumeister, H., & Preuss, T. (2017). Social plasticity in non-territorial male African cichlid fish Astatotilapia burtoni. Journal of Ethology, 35, 109-119. doi:10.1007/s10164-016-0498-0
Gerritsen, J., & Strickler, J.R. (1977). Encounter probabilities and community structure in zooplankton: a mathematical model. Canadian Journal of Fisheries and Aquatic Sciences, 34, 73-82. doi:10.1139/f77-008
Grand, T.C., & Dill, L.M.(1997). The energetic equivalence of cover to juvenile coho salmon (Oncorhynchus kisutch): ideal free distribution theroy applied. Behavioral Ecology, 8, 437-447. doi:10.1093/beheco/8.4.437
Groothuis, T.G., & Carere, C. (2005). Avian personalities: characterization and epigenesis. Neuroscience & Biobehavioral Reviews, 29, 137-150. doi:10.1016/j.neubiorev.2004.06.010
Hamre, K., Yúfera, M., Rønnestad, I., Boglione, C., Conceição, L.E., & Izquierdo, M. (2013). Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture, 5, S26-S58. doi:10.1111/j.1753-5131.2012.01086.x
Harris, S., Ramnarine, I.W., Smith, H.G., & Pettersson, L.B. (2010). Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos, 119, 1711-1718. doi:10.1111/j.1600-0706.2010.18028.x
Hess, S., Fischer, S., & Taborsky, B. (2016). Territorial aggression reduces vigilance but increases aggression towards predators in a cooperatively breeding fish. Animal Behaviour, 113, 229-235. doi:10.1016/j.anbehav.2016.01.008
Jones, K.A., & Godin, J.G.J. (2010). Are fast explorers slow reactors? Linking personality type and anti-predator behaviour. Proceedings of the Royal Society B, 277, 625-632. doi:10.1098/rspb.2009.1607
Lehtiniemi, M. (2005). Swim or hide: predator cues cause species specific reactions in young fish larvae, Journal of Fish Biology, 66, 1285-1299. doi:10.1111/j.0022-1112.2005.00681.x
Kolok, A.S. (1999). Interindividual variation in the prolonged locomotor performance of ectothermic vertebrates: a comparison of fish and herpetofaunal methodologies and a brief review of the recent fish literature. Canadian Journal of Fisheries and Aquatic Sciences, 56, 700-710. doi:10.1139/f99-026
Martins, E.P., & Bhat, A. (2014). Population-level personalities in zebrafish: aggression-boldness across but not within populations. Behavioral Ecology, 25, 368-373. doi.org/10.1093/beheco/aru007
Metcalfe, N.B. (1986). Intraspecific variation in competitive ability and food intake in salmonids: consequences for energy budgets and growth rate. Journal of Fish Biology, 28, 525-531. doi:10.1111/j.1095-8649.1986.tb05190.x
Metcalfe, N.B., Huntingford, F.A., & Thorpe, J.E. (1987). The influence of predation risk on the feeding motivation and foraging strategy of juvenile Atlantic salmon. Animal Behaviour, 35, 901-911. doi:10.1016/s0003-3472(87)80125-2
Molina, D, Arce, E,, & Mercado-Silva, N. (2021). Mexican mojarra can dominate non-native convict cichlids even when outnumbered. Behavioral Ecology and Sociobiology, 75, 16. doi:10.1007/s00265-020-02963-5
Mutzel, A., Dingemanse, N.J., Araya-Ajoy, Y.G., & Kempenaers, B. (2013). Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proceedings of the Royal Society B, 280, 1019-1027. doi.org/10.1098/rspb.2013.1019
Nicieza, A.G., & Metcalfe, N.B. (1999). Costs of rapid growth: the risk of aggression is higher for fast-growing salmon. Functional Ecology, 13, 793-800. doi:10.1046/j.1365-2435.1999.00371.x
Paradis, A.R., Pepin, P., & Brown, J.A. (1996). Vulnerability of fish eggs and larvae to predation: review of the influence of the relative size of prey and predator. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1226-1235. doi:10.1139/cjfas-53-6-1226
Rangeley, R.W., & Godin, J.J. (1992). The effects of a trade-off between foraging and brood defense on parental behaviour in the convict cichlid fish, Cichlasoma nigrofasciatum, Behaviour, 120, 123-138. doi:10.1163/156853992X00246
Raymond, W., Albins, M.A., & Pusack, T.J. (2015). Competitive interactions for shelter between invasive Pacifc red lionfsh and native Nassau grouper. Environmental Biology of Fishes, 98, 57-65. doi:10.1007/s1064 1-014-0236-9
Reale, D., & Festa-Bianchet, M. (2003). Predator-induced natural selection on temperament in bighorn ewes. Animal Behaviour, 65, 463-470. doi:10.1006/anbe.2003.2100
Reale, D., Gallant, B.Y., Leblanc, M., & Festa-Bianchet, M. (2000). Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Animal Behaviour, 60, 589-597. doi:10.1006/anbe.2000.1530
Reddon, A.R., Balk, D., & Balshine, S. (2013). Probing aggressive motivation during territorial contests in a group-living cichlid fish. Behavioural Processes, 92, 47-51. doi:10.1016/j.beproc.2012.10.005
Schürch, R., & Heg, D. (2010). Life history and behavioral type in the highly social cichlid Neolamprologus pulcher. Behavioral Ecology, 21, 588-598. doi:10.1093/beheco/arq024
Schütz, M., & Barlow, G.W. (1997). Young of the Midas cichlid get biologically active nonnutrients by eating mucus from the surface of their parents. Fish Physiology and Biochemistry, 16, 11-18. doi:10.1007/bf00004536
Sih, A., Bell, A.M., Johnson, J.C., & Ziemba, R.E. (2004). Behavioral syndromes: an integrative overview. Quarterly Review of Biology, 79, 241-277. doi:10.1086/422893
Sinn, D.L., Apiolaza, L.A., & Moltschaniwskyj, N.A. (2006). Heritability and fitness-related consequences of squid personality traits. Journal of Evolutionary Biology, 19, 1437-1447. doi:10.1111/j.1420-9101.2006.01136.x
Smith, B.R., & Blumstein, D.T. (2008). Fitness consequences of personality: a meta-analysis. Behavioral Ecology, 19, 448-455. doi:10.1093/beheco/arm144
Smith, C., & Wootton, R.J. (1999). Parental energy expenditure of the male three-spined stickleback. Journal of Fish Biology, 54, 1132-1136. doi:10.1111/j.1095-8649.1999.tb00866.x
Szopa-Comley, A.W., Duffield, C., Ramnarine, I.W., & Ioannou, C.C. (2020). Predatory behaviour as a personality trait in a wild fish population. Animal Behaviour, 170, 51-64. doi:10.1016/j.anbehav.2020.10.002
Thresher, R. (1985). Brood-directed parental aggression and early brood loss in the coral reef fish, Acanthochromis polyacanthus (Pomacentridae). Animal Behaviour, 33, 897-907. doi:10.1016/s0003-3472(85)80024-5
Overli, O., Winberg, S., & Pottinger, T.G. (2005). Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout-a review. Integrative and Comparative Biology, 45, 463-474. doi:10.1093/icb/45.3.463
Wilson, A.J., de Boer, M., Arnott, G., & Grimmer, A. (2011). Integrating personality research and animal contest theory: aggressiveness in the green swordtail Xiphophorus helleri. PLoS One, 6, e28024. doi:10.1371/journal.pone.0028024
Winandy, L., & Denoël, M. (2015). The aggressive personality of an introduced fish affects foraging behavior in a polymorphic newt. Behavioral Ecology, 26, 1528-1536. doi:10.1093/beheco/arv101